

Third Semester M.Sc. Degree Examination, Dec. 2015 (CBCS) MATHEMATICS

M 301 T : Differential Geometry

Max. Marks: 70

Time: 3 Hours

Instructions: 1) Answer any five questions.

2) All questions carry equal marks.

- 1. a) Define:
 - i) Natural co-ordinate function
 - ii) Tangent vector
 - iii) Natural frame field.

With usual notations on E^3 , prove that $v = \sum_{i=1}^3 v_i U_i$.

- b) Let $V_1 = U_1 x U_3$, $V_2 = U_2$ and $V_3 = x U_1 + U_3$. Prove that the vectors $V_1(P)$, $V_2(P)$, $V_3(P)$ are linearly independent at each point of E^3 .
- c) Define:
 - i) Curves in E³.
 - ii) Reparametrization on E3.

Let α be a curve in E³ and f be a differentiable function on E³. Then prove that $\alpha'(t)[f] = \frac{d}{dt}(f \circ \alpha)(t)$. (5+4+5)

- 2. a) If ϕ is a 1-form on E^3 ,then show that $\phi=\sum f_i \ dx_i$, where $f_i=\varphi(u_i)=\varphi.u_i$.
 - b) Let f and g be functions, ϕ and ψ are 1-forms. Then show that $d(\phi \wedge \psi) = d \phi' \wedge \psi \phi \wedge d\psi.$
 - c) For any function f, show that d(df) = 0. Deduce that $d(f dg) = df \wedge dg$. (4+6+4)

P.T.O.

PG-148

- 3. a) Define a derivative map. Let $F = (f_1, f_2, ..., f_m)$ be a mapping from E^n to E^m . If v_p is a tangent vector to E^n at P, then show that $F*(v_p)=(v_p[f_1],v_p[f_2],...,v_p[f_m])$ at F(P).
 - b) With usual notations, prove that $\begin{vmatrix} T^1 \\ N^1 \\ B^1 \end{vmatrix} = \begin{vmatrix} 0 & K & 0 \\ -K & 0 & \tau \\ 0 & -\tau & 0 \end{vmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}.$
 - c) Let β be a unit speed curve in E^3 with k > 0. Then show that β is a plane (5+5+4)curve if and only if $\,\tau=0\,.$
 - 4. a) Define a covariant derivative. If W is a vector field with constant length ||W||, prove that for any vector field V, the covariant derivative $\nabla_{\mathbf{v}}\mathbf{W}$ is every where orthogonal to W.
 - b) Define connection forms. Let E_1 , E_2 , E_3 be a frame field on E^3 . For each tangent vector v to E^3 at P, let $w_{ij}(v) = \nabla_v E_i$. $E_j(P), (1 \le i, j \le 3)$. Then show that each w_{ij} is a 1-form and $w_{ij} = -w_{ji}$.
 - c) Define an isometry on E3. If F and G are isometries of E3, then show that the (5+5+4)composite mapping GoF is also an isometry of E3.
 - 5. a) Define a surface in E3. Use the definition to show that a sphere of unit radius with centre origin is a surface.
 - b) Show that the function $\mathcal{K}: D \to E^3$ defined by $\mathcal{K}(u, v) = (u^2, uv, v^2), u > 0, v > 0$ is a proper patch.
 - c) Show that the ellipsoid M: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is a simple surface. (4+5+5)
 - a) Show that a mapping $\mathcal{T}: D \to E^3$ is regular if and only if the (u, v) partial derivatives $\mathcal{K}_u(d)$ and $\mathcal{K}_v(d)$ are linearly independent for all $d \in DCE^2$.
 - b) Obtain parametrization of surface of revolution.

c) Let $F:M\to N$ be a mapping of surfaces and F^* be its pull back function. Prove the following for p-forms (p = 0, 1, 2) ξ and η

i)
$$F^*(\xi + \eta) = F^*\xi + F^*\eta$$

ii)
$$F^*(\xi \wedge \eta) = F^*\xi \wedge F^*\eta$$
 (5+5+4)

- a) Define shape operator of a surface in E³. Find the shape operator of the following surfaces:
 - i) Sphere of radius r
 - ii) A cylinder.
 - b) Define normal curvature of a surface. If 'P' is an umbilic point of a surface M in E³, then prove that the shape operator S at P is just a scalar multiplication by K = K₁ K₂.
 (8+6)
- 8. a) If \mathcal{K} is a patch in a surface M in E³, then prove that the Gaussian and mean curvatures of M are given by $K = \frac{\ln m^2}{EG F^2}$, $H = \frac{GI + En 2Fm}{2(EG F^2)}$ where $I = U.\mathcal{K}_{uu}$, $M = U.\mathcal{K}_{uv}$, $n = U.\mathcal{K}_{vv}$. U is a unit vector field on M and $E = \mathcal{K}_{u}.\mathcal{K}_{u}$, $F = \mathcal{K}_{u}.\mathcal{K}_{vv}$, $G = \mathcal{K}_{v}.\mathcal{K}_{v}$.
 - b) Find the Gaussian curvature of the ellipsoid $g: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - c) Find the geodesics in a cylinder.

(6+4+4)

III Semester M.Sc. Degree Examination, December 2016 (CBCS)

MATHEMATICS M 301T: Differential Geometry

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer any five questions.

- 2) All questions carry equal marks.
- a) Define directional derivative of a differentiable function by a tangent vector.
 If V_P = (v₁, v₂, v₃)_p is a tangent vector to E³ at p and f is a real valued differentiable function on E³ then show that the directional derivative

$$V_p[f] = \sum_{i=1}^{3} v_i \frac{\partial f}{\partial x_i}(p)$$
. Use it to prove $U_i[f] = \frac{\partial f}{\partial x_i}$ for a natural frame field (U_1, U_2, U_3) on E^3 .

- b) If $V = x U_1 y^2 U_3$, $f = x^2 y + z^3$, and g = xy then compute V[f], V[g] and V[fg].
- 2. a) Define reparametrisation of a curve. Show that every regular curve has a unit speed reparametrisation.
 - b) Reparametrise the curve α (t) = (acost, asint, bt) by its arc length, where b > 0.
 - c) Evaluate the 1-form $\phi = x^2 dx y^2 dz$ on the vector field $V = xU_1 + yU_2 + zU_3$. 3
- 3. a) If ϕ and ψ are any two 1-forms on E³ then prove that $d(\phi \wedge \psi) = (d \phi \wedge \psi \phi \wedge d\psi).$
 - b) If β is a unit speed curve with constant curvature k > 0 and torsion zero then prove that β is part of a circle of radius $\frac{1}{k}$.
 - c) Show that the curve $\beta(s) = \left(\frac{4}{5}\cos s, 1 \sin s, \frac{3}{5}\cos s\right)$ is a circle.
- 4. a) Let V = (1, -1, 2), P = (1, 3, -1) and $W = x^2U_1 + yU_2$. Then compute $\nabla_{V_p}W$.
 - b) Obtain the connection forms for a cylindrical frame field. 5
 - c) Prove that a translation, a rotation and an orthogonal transformation are isometries.

P.T.O.

5

ns:

fine

5. a) Define a proper patch. If f is a real valued differentiable function on E³ then prove that the map $X: D \subset E^2 \to E^3: X(u, v) = (u, v, f(u, v)) \ \forall (u, v) \in D$ is a · proper patch.

6

b) Is cylinder in E3, a surface? Justify.

4

c) If M: g(x, y, z) = C is a surface in E^3 then show that the gradient vector field $\nabla g = \sum \frac{\partial g}{\partial x} U_i$ is a non vanishing normal vector field on E^3 .

6. a) Obtain parametrisation of the following: so anotherup IIA (S

i) A cylinder in E³.

a) Define directional derivative of a differentiable fund ii) Entire surface obtained by revolving the curve $C: y = \cosh x$ around differentiable function on E3 then show that the directional de

6

b) With usual notations prove

ii) $X^*(\phi) = \phi(X_u) du + \phi(X_v) dv$ for any $1 - form \phi$.

(iii) $X^*(d\phi) = \left(\frac{\partial}{\partial u}(\phi(X_v)) - \frac{\partial}{\partial v}(\phi(X_u))\right) dudv$. To not be a separate of the contract of the

8

a) Define shape operator of a surface at a point. Show that it is a linear operator. 7.

5

b) With usual notations prove $K = k_1 k_2$, $H = \frac{1}{2}(k_1 + k_2)$.

4

c) If V and W are linearly independent tangent vectors at a point P of $M_{\rm \subset} E^3$ then prove that a) If & and we are any two 1-forms on E3 then prove that

i) $S(V) \times S(W) = K(P) V \times W$.

ii) $SV \times W + V \times SW = 2 H(P) V \times W$.

5

a) Compute the Gaussian, the mean curvatures and hence the principal 8. curvatures k_1 , k_2 for the surface $X(u, v) = (u \cos v, u \sin v, bv)$, $b \neq 0$.

4

b) Let α be a regular curve in a surface M in E^3 and let U be a unit normal vector field restricted to α . Then prove that the curve α is principal if and only if U' and α' are collinear at each point.

c) Determine the geodesics in

i) a plane

ii) a sphere

III Semester M.Sc. Degree Examination, December 2014 (RNS) (Y2K11 Scheme) **MATHEMATICS**

M303: Differential Geometry

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer any five questions choosing atleast two from each Part.

2) All questions carry equal marks.

PART - A

a) Define directional derivative of a differentiable function on E³.

If $V_p = (v_1, v_2, v_3)_p$ in any tangent vector to E^3 at $P \in E^3$, then prove that for any real valued differentiable function f on ${\rm E}^3$, directional derivative of f by ${\rm V}_{\rm p}$

in
$$V_p[f] = \sum_{i=1}^3 v_i \frac{\partial f}{\partial x_2}$$
 (p).

Use the above the formula to compute Vp [f]

for
$$f = e^x \cos y$$
, $Vp : P = (2, 0, -1), V = (2, -1, 3).$

10

- b) Let h(s) = log s on J : s > 0. Reparametrize the curve $\alpha(t) = (e^t, e^{-t}, \sqrt{2} t)$ using h. Verify the formula $B'(s) = \alpha'(h(s)) \frac{dh}{ds}(s)$, were B in a reparametrisation of α by h.
- 2. a) Let $f(x, y, z) = (x^2 1) dy + (y^2 + 2) z$. Find the 1 form df and evaluate it an $V_{D}: V = (1, 2, -3), P = (0, -2, 1).$

b) Let $\phi = yzdx + dz$, $\psi = \sin z \ dz + \cos z \ dy$ be two 1 – forms on E^3 . Then compute $\phi \wedge \psi$ and $d(\phi \wedge \psi)$. Verify the formula $d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi$.

Let $F: E^3 \to E^3$ be a mapping defined by $F(x, y, z) = (x \cos y, x \sin y, z)$. Then compute $F_{*p} V_p$ for Vp : V = (2, -1, 3), P = (0, 0, 1).

6

5

6

5

P.T.O.

ks: 8

9

- 3. a) Derive Frenet formulae for a unit speed curve.
 - b) Compute the Frenet apparatus T, N, B, K, T for a unit speed curve $\beta(s) = \left(\frac{4}{5}\cos s, 1 \sin s, \frac{-3}{5}\cos s\right) \text{ and show that it is a circle.}$
 - c) With usual notations derive the formula $\nabla v_p W = \sum V_p[w_i] \ U_i$ (p), where $W = (w_1, w_2, w_3)$ is a vector field on E^3 . Use it to compute $\nabla v_p W$ for $W = x^2 V_1 + y V_2$ and $V_p : V = (1, -1, 2)$ and P = (1, 3, -1).
- 4. a) Let E₁, E₂, E₃ be a frame field on E³ with the attitude matrix A = (a_{ij}). Then show that the matrix of connection forms W = (W_{ij}) of E₁, E₂, E₃ is given by W = (dA) A^t, where dA is the differential and A^t is the transpose of A. Use the formula to compute connection forms of a cylindrical frame field.
 - b) Prove the following:
 - i) an orthogonal transformation on E3 is an isometry.
 - ii) an isometry $F: E^3 \to E^3$ with F(0) = 0 is an orthogonal transformation. 7

PART-B

5. a) Define:

- i) Proper patch
- ii) Simple surface.

If $X: E^2 \to E^3$ is defined by X(u, v) = (u + v, u - v, uv), then prove that X is a proper patch in E^3 and its image is the surface $z = \frac{x^2 - y^2}{4}$.

b) Let g be a real valued differentiable function on E^3 and 'c' be a real number. Show that the subset $M = \{(x, y, z) \in E^3 \mid g(x, y, z) = c\}$ is a surface in E^3 if $dg \neq 0$ at any point of M. Hence deduce that a sphere is a surface in E^3 . (6+4)

6. a) Obtain parametrization of a cylinder.

4

b) Let P be any point in a surface M and X be a patch in M with $P = X(u_0, v_0)$. Show that a tangent vector V_p to E^3 at P is tangent to M at P if and only if V_p is a linear combination of $X_u(u_0, v_0)$ and $X_u(u_0, v_0)$.

6

- c) With usual notations, prove
 - i) $F^*(\xi \wedge \eta) = F^*(\xi) \wedge F^*\eta$
 - ii) $F^*(d\xi) = .d(F^*\xi)$.

6

7. a) Define shape operator of a surface at a point. Find the shape operator of the saddle surface at (0, 0, 0).

6

b) Show that every point on a sphere is a umbilic point.

6

c) With usual notations prove $K = k_1 k_2$, $H = y_2 (k_1 + k_2)$.

4

8. a) Prove that the Gaussian and mean curvatures of a surface are given by

4

$$K = \frac{\begin{vmatrix} sv.v & sv.w \\ sw.v & sw.w \end{vmatrix}}{\begin{vmatrix} v.v & v.w \\ w.v & w.w \end{vmatrix}}$$

b) If X is a patch in a surface M in E3, then prove that the fundamental magnitudes l, m, n are given by l = U. X_{uu} , M = U. X_{uv} , n = U. X_{vv} , where U is a unit normal vector field on M. Hence compute the Gaussian and mean curvatures of X (u, v) = (u cos v, u sin v, bv), $b \neq 0$.

7

c) Determine the geodesics in

5

i) plane

ii) sphere.

III Semester M.Sc. Degree Examination, January 2013 (R.N.S.) (₹2K11 Scheme) MATHEMATICS

M 303 : Differential Geometry

Time: 3 Hours

Max. Marks: 80

Instructions: 1. Answer any five questions choosing atleast two from each Part.

2. All questions carry equal marks.

PART-A

- 1. a) If V₁ = U₁ xU₃, V₂ = U₂ and V₃ = xU₁ + U₃ then prove that :
 i) V₁ (P), V₂ (P) and V₃ (P) are linearly independent at each P ∈ E³.
 ii) The vector field xU₁ + yU₂ + zU₃ can be expressible as a linear combination of V₁, V₂, V₃.
 - b) Compute $V_p[f]$ for $V_p: V = (2, 1, -3), P = (2, 0, -1)$ and $f = y^2z$.
 - c) Prove the identity $V = \sum V[x_i] U_i$ for any vector field V, where x_1, x_2, x_3 are natural coordinate functions.
- 2. a) Let α be a curve in E³ and let f be a differentiable function on E³. Then prove that $\alpha'(t)[f] = \frac{d}{dt}(f \circ \alpha)(t)$.
 - b) Let h (s) = log s on J and S > 0. Reparametrize α (t) = (e^t, e^{-t}, $\sqrt{2}$ t) using h. 4
 - c) Evaluate the 1-form $(z^2-1) dx dy + x^2 dz$ on the tangent vector $V_p: V = (1, 2, -3), P = (0, -2, 1).$
- 3. a) If $F: E^n \to E^m$ is a mapping with $F = (f_1, f_2, ..., f_m)$, then prove that for any tangent vector V_p , $F_{*p} V_p = (V_p [f_1], V_p [f_2], ..., V_p [f_m]_{F(p)}$. Hence deduce

that
$$F_{*p}(U_j(P)) = \sum_{i=1}^{M} \frac{\partial f_i}{\partial x_j}(P) U_i(F(P)), J = 1, 2, ..., n.$$
 8

b) Compute the Frenet apparatus T, N, B, K, τ for a curve

 β (S) = $\left(a \cos \frac{s}{c}, b \sin \frac{s}{c}, b \frac{s}{c}\right)$, where $C = \sqrt{a^2 + b^2}$.

8 4

8

4

6

P.T.O.

- 4. a) If α is a regular curve with speed function v, then prove that the velocity and acceleration of α are given by $\alpha' = v T$, $\alpha'' = \frac{dv}{dt} T + kv^2 N$.
 - b) Let $V = (y x) U_1 + xyU_3$, 4 $W = x^2 U_1 + yzU_3$. Compute $\nabla_v W$.
 - c) Prove that for an isometry F of E³ there exist a unique translation T and a 5 unique orthogonal transformation C such that F = TC. 7

PART-B

- 5. a) Define a patch in E³. Show that for a real valued differentiable function on a non empty open set D of E^2 , the function $X:D\to E^3$ defines by X(u, v) = (u, v, f(u, v)) is a proper patch in E^3 .
 - b) Verify whether the function X(u, v) = (u, uv, v) is a patch or not. 7
 - c) Show that surface of revolution is a surface.
- 6. a) Let g be a real valued differentiable function on E³ and 5 $M = \{(x, y, z) \in E^3 \mid g(x, y, z) = c\}$ is a surface in E^3 . Prove that the gradient vector field $\nabla g = \sum_{i=1}^{3} \frac{\partial g}{\partial x_i} U_i$ is a non-vanishing normal vector field on M. 7
 - b) Parametrize the surface obtained by revolving the curve C: $(z-2)^2 + y^2 = 1$
 - c) Let $X:D\to M$ be a patch in a surface M and let ϕ and γ be 1-form and 2-forms respectively on M. Prove that:

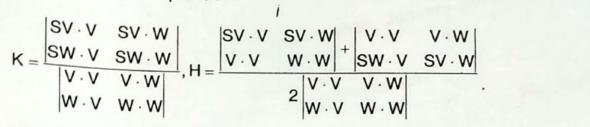
i)
$$X^* (\phi) = \phi (X_u) du + \phi (X_v) dv$$

ii)
$$X^* (\gamma) = \gamma (X_u, X_v) du dv$$
.

- 7. a) Define shape operator of a surface. Find the shape operator of :
 - i) a sphere of radius r
 - ii) a cylinder in E3.

4

b) With usual notations prove:



- c) Show that:
 - i) a plane in E3.
 - ii) a cylinder in E3 are flat surfaces.

4

6

- a) Compute K and H hence K₁ and K₂ for the surface M: Z = xy, where K, H, K₁ and K₂ have their usual meaning.
 - b) Determine the geodesics in a cylinder.

- 6
- c) Prove that the tangent vector $V = v_1 X_u + v_2 X_v$ is a principal vector if and

only if
$$\begin{vmatrix} v_2^2 & -v_1 v_2 & v_1^2 \\ E & F & G \\ e & m & n \end{vmatrix} = 0$$
.